Futurists often speak of society’s inevitable technological “singularity,” a point in the near future where computers will become ubiquitous units, seamlessly integrated in everyday objects. This trend is already being foreshadowed by manycore processing via the network-on-chip approach, a novel paradigm which implements on-chip networks that enable platforms with extreme parallel capabilities. Our group seeks to develop new machine learning, optimization, and resource management techniques which can enable such a fundamental shift for energy-efficient, cost-effective, large-scale distributed computational platforms for both embedded and high-performance applications.

Map
Contact
Prof. Radu Marculescu
System Level Design Group
Electrical and Computer Engineering
The University of Texas at Austin
radum@utexas.edu
Join Us
We are actively looking for smart and passionate students like you!
Join the team and be at the forefront of machine learning, network science, and systems design.
Join Us
Embedded Systems
Embedded systems are computer systems that perform dedicated functions while being parts of a larger system. Our research targets primarily heterogeneous many-core System on a Chip (SoC) platforms where communication happens via the network-on-chip. These SoCs should be designed to meet aggressive performance requirements, while coping with limited battery capacity, thermal design power, and real-time constraints. Over the years, we have considered deterministic, probabilistic, and statistical physics-inspired design paradigms. Lately, our research targets machine learning approaches (e.g., imitation and reinforcement learning) for performance and energy optimization and resource management in heterogeneous SoC platforms.
Cyber-Physical Systems
Cyber-physical systems (CPS) refer to a new generation of networked embedded systems that bring together sensing, computation, communication, control and actuation in order to sustain a continuous interaction with the physical world (e.g., processes taking place on electrical power grids, transportation and traffic roads, communication and financial networks, medical devices, smart buildings, etc.). Physical processes are predominantly non-stationary in nature and require time-dependent models for understanding their behavior. Our research focuses on accurate modeling physical processes to better understand the theoretical foundations of CPS design and optimization.