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Abstract

The increasing scale of vision transformers (ViT) has made the efficient fine-
tuning of these large models for specific needs a significant challenge in various
applications. This issue originates from the computationally demanding matrix
multiplications required during the backpropagation process through linear layers
in ViT. In this paper, we tackle this problem by proposing a new Low-rank Back-
Propagation via Walsh-Hadamard Transformation (LBP-WHT) method. Intuitively,
LBP-WHT projects the gradient into a low-rank space and carries out backpropaga-
tion. This approach substantially reduces the computation needed for adapting ViT,
as matrix multiplication in the low-rank space is far less resource-intensive. We
conduct extensive experiments with different models (ViT, hybrid convolution-ViT
model) on multiple datasets to demonstrate the effectiveness of our method. For in-
stance, when adapting an EfficientFormer-L1 model on CIFAR100, our LBP-WHT
achieves 10.4% higher accuracy than the state-of-the-art baseline, while requiring
9 MFLOPs less computation. As the first work to accelerate ViT adaptation with
low-rank backpropagation, our LBP-WHT method is complementary to many prior
efforts and can be combined with them for better performance.

1 Introduction

Vision transformers (ViT) have emerged as the latest state-of-the-art tool in numerous general
computer vision tasks [1–7]. However, tailoring these models to meet specific needs (e.g., new
dataset with different distribution) can be challenging. Indeed, adapting ViT models via finetuning
demands considerable computational resources and is often impractical for most edge applications.
For instance, to maintain privacy, in federated learning [8–10], model adaptation is limited to users’
personal edge devices (e.g., smartphones), where computational power is tightly restricted [11, 12].

The primary computational bottleneck arises from gradient propagation through the dense layers of
ViT. Specifically, calculating gradients for layer weights and inputs requires two computationally-
intensive matrix multiplications, given the gradient for output [13]. To tackle this issue, [14] tries
to simplify matrix multiplications using low-rank reparametrization. However, this method only
reduces the gradient computation for weights and not for inputs, thus limiting the overall speedup.
This observation raises the following question:

How can we decrease the computational cost for all operations, including gradient computations for
weights and inputs, involved in backpropagation (BP) through any linear layer in the ViT model?

To answer this question, we introduce a new Low-rank BackPropagation via Walsh-Hadamard
Transformation (LBP-WHT) method. As shown in Figure 1, our method intuitively performs BP for
gradients w.r.t. inputs and weights in a low-rank space. To achieve this, we project the gradient w.r.t.
the output into a low-rank space using WHT [15], then perform low-rank matrix multiplications, and
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finally project the results back. This way, all matrix multiplications occur in a low-rank space, hence
the computational cost is significantly reduced. In summary, our contributions are as follows:

• We propose LBP-WHT, a new approach which greatly reduces the computational cost for adapting
ViT while maintaining accuracy; our method lowers the computational barrier and enables
adapting large ViT models on resource constrained edge devices.

• LBP-WHT is the first work accelerating ViT training by low-rank BP; thus, LBP-WHT is
orthogonal to prior works and can be combined with them for a better performance. Additionally,
LBP-WHT offers abundant flexibility that can provide a good tradeoff between accuracy and cost.

• Extensive experiments on multiple datasets demonstrate the effectiveness of our method. Indeed,
LBP-WHT consistently outperforms the baseline methods both in accuracy and speed. For
instance, LBP-WHT achieves 10.4% higher accuracy, while requiring 9 MFLOPs less computation
than [14] for training EfficientFormer-L1 on CIFAR100 dataset.

The paper is organized as follows. Section 2 formulates the problem associated with BP for linear
layers. Section 3 presents our method LBP-WHT in detail. Experimental results are presented in
Section 4. Section 5 reviews relevant work. Finally, Section 6 summarizes our main contributions.

2 Problem Formulation

Naming conventions: In this paper, we treat all feature maps as matrices composed of real numbers,
with dimensions RC×L, where C represents the number of rows and L denotes the number of
columns. Each row in the matrix is regarded as a “channel” consisting of L elements, and there are a
total of C channels in the feature map. We use subscripts to identify specific variables, such as Cx

for the number of channels associated with variable x. Gradients with respect to x are denoted by gx,
with the subscript indicating the target variable x.

Backpropagation for linear layers: We focus on the BP process for linear layers, a crucial building
block for vision transformers. Given an input x ∈ RCx×L and weights w ∈ RCy×Cx , the forward
propagation to compute the output y ∈ RCy×L can be expressed as:

y = x · wT (1)

Therefore, as shown in Figure 2a, given the gradient with respect to the output y, i.e., gy ∈ RCy×L, the
back-propagation for computing the gradient with respect to the weights w, gw ∈ RCy×Cx , and the
gradient with respect to the input x, gx ∈ RCx×L, can be represented as two matrix multiplications:

gw = gy · x, gx = gy · w (2)

The gradient w.r.t. the weight (gw) is utilized for updating the weights w, while the gradient w.r.t.
the input (gx) is employed for propagating the gradient to other layers. During the BP process, each
matrix multiplication incurs a computational cost of 2CxCyL FLOPs, which amounts to 4CxCyL
FLOPs, in total. Given that in ViT models, the number of channels (Cx and Cy) and the length of the
input feature map (L) are substantial [1–7], the computational cost for BP becomes significant.
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Figure 1: Our LBP-WHT.
“Mat Mul” is short for “Ma-
trix Multiplication”.

Low-rank backpropagation: As shown in Figure 1 and 2b, we propose
reducing the computational cost for both matrix multiplications by
employing low-rank approximations. Specifically, we first project
variables into a low-rank space as follows:

ĝy = p(gy), x̂ = p(x) (3)

Here, ĝy ∈ RCy×r and x̂ ∈ RCx×r represent the low-rank space
projections (r << L) for the gradient with respect to the output (gy) and
input x, respectively. The projection function p(·) will be introduced
in the next section.

Next, we execute the BP through the linear layer in the low-rank spaces
as follows:

ĝw = ĝy · x̂, ĝx = ĝy · w (4)
Finally, we project the low-rank gradient with respect to the input
(ĝx) back into its original space. The reverse projection for ĝw can be

2



𝑝𝑝−1(⋅)𝑝𝑝(⋅)

𝑝𝑝(⋅)

𝑥𝑥

𝑤𝑤
𝑔𝑔𝑦𝑦

𝑤𝑤

𝑥𝑥
𝑔𝑔𝑦𝑦

𝑔𝑔𝑤𝑤
𝑔𝑔𝑥𝑥

�𝑔𝑔𝑤𝑤
�𝑔𝑔𝑥𝑥

Low-rank
Projection

Reverse
Projection

Low-rank
Matrix Mul

Full-rank
Matrix Mul

(a
) V

an
ill

a 
BP

(b
) L

BP
-W

HT

×

×

×

×

�𝑔𝑔𝑤𝑤
�𝑔𝑔𝑥𝑥

�𝑥𝑥
�𝑔𝑔𝑦𝑦

1
1 2 3 4

2

3

4

(c)

Figure 2: (a-b) Workflows for BP through a linear layer utilizing (a) the conventional method and
(b) our LBP-WHT method. The intuition is to reduce the computation cost for BP by performing
matrix multiplication in a low-rank space. To achieve this, we first project variables into a low-rank
space using WHT p(·), then carry out efficient matrix multiplications, and finally project them black
using p−1(·), where both p and p−1 are implemented with WHT. (c) Bases Bi,j for order-4 2D WHT.
White and Black represents +1 and -1, respectively. Of note, in the context of ViT, 2D feature maps
are flattened into 1D, so we utilize a flattened version of these bases.

omitted as it already exists in the same space RCy×Cx as the target gw. For ĝx, the reverse projection
is accomplished using the function p−1(·), the details of which will be presented later:

g̃w = ĝw, g̃x = p−1(ĝx) (5)

Here, g̃w and g̃x represent the resulting gradients for weights and input. As these gradients are
generated through an approximated back-propagation process rather than the standard BP, we denote
these variables with tildes.

3 LBP-WHT: Low-rank BackPropagation via WHT

As shown in Figure 2b, intuitively, we reduce the computational cost by performing back-propagation
in a low-rank space, as described in Equation 4. For instance, using a rank r approximation, each
matrix multiplication requires 2CxCyr FLOPs, which can be substantially smaller than 2CxCyL
when r << L. Nevertheless, this approach necessitates two additional steps, projection and reverse
projection (as illustrated in Equation 3 and 5), which introduce some computational overhead.
Furthermore, the low-rank projection may add noise and potentially diminish the quality of training.
To address these concerns, our method incorporates a low-overhead projection function based on the
WHT and tackles the second issue by selecting an appropriate set of WHT bases.

WHT is a generalized Fourier transformation. Figure 2c displays the transformation basis for an
order-4 WHT. For an order-n 2D WHT, there are n × n bases Bi,j , with each basis being an
n × n matrix containing only +1 and −1. Of note, in the context of ViT, 2D feature maps are
flattened into 1D maps, so we utilize a flattened WHT base—a vector with a length of n2, i.e.,
Bi,j ∈ Zn2×1, 1 ≤ i, j ≤ n. WHT possesses four properties that make it advantageous for us:

• The transformation bases are complete.
• The transformation bases are orthogonal.
• The transformation bases contain only +1 and −1.
• The transformation cost can be reduced via fast WHT algorithm with O(n log n) complexity.

The first property (completeness) allows WHT to perform transformations ranging from lossy (when
few bases are activated) to lossless (when all bases are activated). This grants flexibility in exploring
the trade-off between efficiency and accuracy. The second property ensures that any variable has
precisely one projection result, obtainable via matrix multiplication. For instance, the projection
function for gy (Equation 3) with basis Bi,j can be expressed as p(gy) = gy · Bi,j . Likewise,
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the reverse projection can also be implemented using a simple matrix multiplication. The third
and final properties demonstrate the efficiency of WHT implementation, requiring only O(n log n)
additions/subtractions and no multiplications [16].

3.1 Low-rank Back-Propagation with WHT

Indeed, these four properties demonstrate that WHT is an ideal fit for our needs, offering both low
overhead and high flexibility for selecting an appropriate set of bases. Therefore, we employ WHT
as the projection function p(·) and reverse projection function p−1(·) in Equations 3 and 5. More
specifically, for an order-n WHT with a set of r bases chosen by an index set I, the projection
function can be written as:

p(x) = WHT(x; I) = x · (Bi1,j1 Bi2,j2 · · ·Bir,jr ) , (ik, jk) ∈ I, 1 ≤ k ≤ r (6)

where I = {(ik, jk)|1 ≤ ik, jk ≤ n, 1 ≤ k ≤ r} indicates which bases are activated. Similarly, the
reverse projection function can be expressed as:

p−1(x) = WHT−1(x; I) = x · (Bi1,j1 Bi2,j2 · · ·Bir,jr )
T
, (ik, jk) ∈ I, 1 ≤ k ≤ r (7)

For simplicity, both Equations 6 and 7 are presented using the vanilla WHT algorithm with com-
putational complexity O(n2), rather than the fast WHT algorithm with complexity O(n log n).
Consequently, our LBP-WHT algorithm can be summarized as Algorithm 1 also shown in Figure 2b.

Algorithm 1 Backpropagation through a linear layer with LBP-WHT.

Input: Input x, weight w, gradient w.r.t. output gy , Selected WHT base indices I
Output: Approximated gradient w.r.t. input g̃x, approximated gradient w.r.t. weight g̃w

x̂← p(x) = WHT(x; I) ▷ Projection to a low-rank space with WHT (Equation 3)
ĝy ← p(gy) = WHT(gy; I)
ĝw ← ĝTy · x̂ ▷ Efficient matrix multiplication in a low-rank space (Equation 4)
ĝx ← ĝy · w
g̃x ← p−1(ĝx) = WHT−1(ĝx; I) ▷ Reverse projection to a full-rank space (Equation 5)
g̃w ← ĝw ▷ Skipped reverse projection since ĝw is already in a full-rank space

Given input for BP, we first project x and gy into low-rank space (Equation 3), then we performs
matrix multiplication (Equation 4) and lastly we project the results back (Equation 5).

3.2 WHT Bases Selection

Here we explore two types of basis selection strategies: low-pass and low-heuristic-error.

Low-pass (LP) Base Selection: Natural images have strong spatial locality, i.e., pronounced low-
frequency components [17, 18]. We take advantage of this feature and choose bases with stronger
low-frequency responses, which have smaller indices as illustrated in Figure 2c. More specifically,
we consider both L1-based and L∞-based low-pass basis selection strategies (LPL1

and LPL∞ ):

IL1
= {(ik, jk)

∣∣ |ik|+ |jk| ≤ rL1
, 1 ≤ ik, jk ≤ n,

1

2
rL1

(1 + rL1
) = r}, LPL1

selection (8)

IL∞ = {(ik, jk)
∣∣ max(ik, jk) ≤ rL∞ , 1 ≤ ik, jk ≤ n, r2L∞

= r}, LPL∞selection (9)
IL1

and IL∞ are the index sets for selecting WHT bases, as described in Section 3.1.

Low-heuristic-error (LHE) Base Selection: According to Parseval’s Theorem [19], WHT preserves
the signal energy, so by selecting the WHT bases with the top-r strongest responses, we can preserve
most energy during low-rank projection and minimize the error. Since profiling the energy for all
WHT bases on all training steps is expensive, we profile the energy for all WHT bases only for a
small number of training steps and select the bases with the top-r energy.

Considering that the L1-based low-pass basis selection has a much lower profiling overhead than the
low-heuristic-error basis selection and provides finer granularity in balancing accuracy and efficiency,
we primarily focus on the LPL1

selection method and explore the other two in Section 4.5.
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3.3 Overhead Analysis

FLOPs
Vanilla BP 4CxCyL
Projection (Cx + Cy)Lr
Low-rank MM 4CxCyr
Reverse Projection CxLr

Table 1: Computation required by
vanilla BP and components in our LBP-
WHT. We consider the projection and
reverse projection as overhead. “MM” is
short for “Matrix Multiplication”.

Since the computational cost for the fast WHT algorithm
depends on the basis selection, we simplify the analysis in
this section by considering the matrix multiplication-based
vanilla WHT algorithm, as shown in Equations 6 and 7.
Table 1 presents the computation requirements for a linear
layer with input and output channels Cx and Cy, feature
map size L, and the rank for low-rank WHT approxi-
mation r. Our LBP-WHT achieves a L

r times speedup
with an overhead of (2Cx + Cy)Lr FLOPs, which is only
(2Cx+Cy)Lr

4CxCyL
or ( 1

Cx
+ 1

2Cy
) r2 of the total computation re-

quired by vanilla BP. Given that ViT typically has a large
number of channels, the overhead is very small.

For instance, the final linear layer in SwinV2-small [1] consists of 3072 input channels, 768 output
channels, and a feature map size of 49, which means Cx = 3072, Cy = 768, and L = 49. As per
Table 1, conventional backpropagation (BP) requires 462.3 MFLOPs. In contrast, our Low-Rank
Backpropagation with WHT (LBP-WHT) method, assuming a rank of 8 (r = 8), needs only 78.2
MFLOPs, which is roughly 16.9% of the computation required by vanilla BP.

Breaking down the 78.2 MFLOPs for LBP-WHT, we see that 1.5 MFLOPs are needed for the low-rank
projection, 75.5 MFLOPs for BP in the low-rank space, and 1.2 MFLOPs for the reverse projection.
The combined overhead is 2.7 MFLOPs, accounting for just 0.6% of vanilla BP’s computation and
3.5% of LBP-WHT’s computation. This demonstrates that with WHT, we can significantly reduce
the computation for BP while incurring negligible overhead for low-rank projection.

4 Experimental Results

In this section, we first present our experimental results on image classification and semantic seg-
mentation tasks. Then, we explore the impact of different ranks for low-rank projection and different
base selection strategies. Lastly, we present our preliminary results for deploying our methods on
real edge devices in the supplementary material.

4.1 Experimental Setup

Environment: We setup our environment with PyTorch 1.13, MMClassification v0.25 and MMSeg-
mentation v0.30. Models are trained with an NVIDIA-A6000 GPU.

Classification: We conduct experiments for image classification following [20]. We use Ima-
geNet [21]-pretrained ViTs and finetune them on six different datasets, namely, CIFAR100 [22]
(CF100), CIFAR10 [22] (CF10), Cars [23], Flowers [24], Food [25], and Pets [26]. We standardize
the image resolution across all datasets to 224×224. Each model is finetuned for 50 epochs using the
AdamW [27] optimizer and a batch size of 64. The learning rate is adjusted for each dataset based on
the performance of EfficientFormer-L1 [28] with vanilla BP.

Semantic Segmentation: We use the ADE20K [29]-pretrained Segformer-mit-b0 [30] model and
finetune it on two datasets, Cityscapes [31] (City) and the enhanced Pascal-VOC 2012 [32] (VOC12A).
The images are downscaled and cropped to a size of 512×512 pixels for training. Models are finetuned
for 20,000 steps using the AdamW optimizer and a batch size of 8.

Partial Training: We primarily report on the results of training the final stage of the ViT using various
methods, a common approach in transfer learning to reduce the computational cost [18, 33–36]. More
results for full training are included in the supplementary material.

Baselines Comparisons: We compare our results against three baseline methods: Full BP, “LoRA”,
and “LoRA-all”. Full BP refers to training the model with standard full-rank backpropagation.
“LoRA” and “LoRA-all” are methods derived from [14]. “LoRA” strictly follows [14], which uses
low-rank reparametrization solely in the ViT’s attention modules, while “LoRA-all” applies this
method to all linear layers. For hybrid CNN-ViT models, where the attention modules are usually
only in the final stage, we use “LoRA-all” for full training.
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Partial Training: Training the Last Stage
Model Method R Speedup mAcc MFLOPs CF100 CF10 Cars Flowers Food Pets

Efficient
Former [28]

L1
(Hybrid)

Full BP - 1.0× 88.66 1685.01 79.28 95.23 84.80 95.50 84.04 93.13
LoRA 8 6.9× 79.59 242.61 65.25 87.40 65.76 90.16 76.46 92.50
LoRA-all 8 1.7× 85.97 976.50 76.92 94.38 76.84 93.56 81.50 92.64
LPL1

-2★ 3 7.2× 85.50 233.62 75.61 93.35 76.96 95.07 79.65 92.34
LPL1

-4★ 10 3.5× 87.76 480.00 78.27 94.60 82.60 95.53 82.37 93.16
LPL1 -8 36 1.2× 88.62 1397.02 79.34 95.31 84.57 95.58 83.98 92.94

Efficient
Former [28]

L7
(Hybrid)

Full BP - 1.0× 91.91 11071.73 86.40 97.61 87.48 97.19 88.58 94.22
LoRA 8 2.0× 88.45 5520.52 81.66 95.44 78.95 95.82 85.15 93.65
LoRA-all 8 1.9× 90.36 5973.40 85.09 97.10 83.66 96.16 86.60 93.54
LPL1

-2★ 3 9.2× 89.88 1202.83 83.78 96.73 83.02 96.55 85.38 93.84
LPL1

-4★★ 10 3.8× 91.16 2905.16 85.10 97.22 86.01 97.14 87.48 94.03
LPL1

-8 36 1.2× 91.80 9241.53 86.19 97.62 87.32 97.40 87.77 94.47

Efficient
FormerV2 [37]

S0
(Hybrid)

Full BP - 1.0× 84.27 454.64 72.37 92.63 75.90 92.73 81.44 90.52
LoRA 8 2.2× 74.42 206.29 60.74 84.89 52.99 86.47 72.23 89.18
LoRA-all 8 1.5× 78.94 313.19 65.51 88.95 63.49 88.94 76.88 89.89
LPL1

-2★ 3 4.5× 77.53 99.94 65.75 88.68 59.02 89.51 74.72 87.49
LPL1

-4★★ 10 2.7× 81.29 168.60 69.03 90.88 68.34 90.73 79.45 89.29
LPL1

-8 36 1.1× 83.78 405.84 71.90 92.29 74.31 92.60 81.07 90.52

Efficient
FormerV2 [37]

L
(Hybrid)

Full BP - 1.0× 91.03 3605.86 82.26 96.13 88.78 96.80 87.63 94.60
LoRA 8 2.5× 84.74 1469.66 74.35 92.94 70.99 92.97 82.81 94.36
LoRA-all 8 1.7× 87.94 2092.47 78.97 94.99 80.39 94.32 84.94 94.03
LPL1 -2★ 3 6.8× 86.88 533.61 78.00 94.28 76.05 94.36 84.14 94.47
LPL1 -4★★ 10 3.3× 89.47 1088.06 80.15 95.54 84.64 95.97 85.85 94.66
LPL1 -8 36 1.1× 90.79 3150.95 82.24 96.02 87.34 96.68 87.41 95.07

SwinV2 [1]
Small
(ViT)

Full BP - 1.0× 90.62 3896.51 80.84 96.07 85.35 97.61 88.31 95.53
LoRA 8 2.4× 78.00 1600.19 68.50 89.62 54.15 83.77 79.81 92.15
LoRA-all 8 2.0× 84.86 1974.72 73.33 92.29 74.78 90.99 84.61 93.16
LPL1

-2★★ 3 3.3× 90.32 1166.98 80.23 95.65 85.30 97.50 88.06 95.15
LPL1

-4★★ 10 2.5× 90.43 1535.36 80.39 95.71 85.30 97.54 88.32 95.34
LPL1

-8 36 1.3× 90.60 2932.84 80.80 95.80 85.72 97.56 88.19 95.53

Full Training

Efficient
FormerV2 [37]

S0
(Hybrid)

Full BP - 1.0× 89.19 2259.93 84.06 96.88 84.80 93.62 84.99 90.79
LoRA-all 8 1.2× 86.07 1899.99 81.14 96.27 76.25 90.60 81.88 90.27
LPL1

-4 10 1.9× 78.56 1186.67 72.93 92.67 51.14 90.68 74.62 89.34
LPL1

-7★★ 28 1.2× 87.86 1833.31 83.14 96.53 80.69 92.21 83.76 90.84
LPL1

-8 36 1.1× 88.56 2116.41 83.42 96.76 83.00 92.75 84.27 91.14

Table 2: Results for image classification. “LPL1 -r” refers to our LBP-WHT method with LPL1 -r base selection
as outlined in Equation 8. “mAcc” represents the mean accuracy across all datasets. “R” is short for “rank”.
“Hybrid” represents CNN-ViT-hybrid architecture. Results outperforming both LoRA and LoRA-all in speed
and mAcc are underlined and marked with ★. Those exceeding all LoRA methods get ★★. Any results that
have higher speed or mAcc are highlighted in bold. More results are included in the supplementary material.

Computation Measurements and Preliminary Deployment Results: To determine the compu-
tational requirements of different models and methods, we run model training on an Intel 11900K
CPU and measure the exact FLOPs using the embedded performance tools “perf” in the Linux kernel
v5.15.87. For preliminary deployment results, we test our method on the last two linear layers of
EfficientFormer-L1, using OpenBLAS and CuBLAS for CPU and GPU testing respectively on an
NVIDIA Jetson Nano. The results for deployment are reported in the supplementary material.

4.2 Image Classification Results

Table 2 demonstrates the effectiveness of our LBP-WHT method in adapting ViT for image classifi-
cation tasks. Here are some more specific observations:

Comparison with LoRA-based baselines: Our LBP-WHT method consistently surpasses the LoRA-
based method across all eight datasets in both partial and full training modes. For instance, when only
training the final stage of EfficientFormer-L1, LBP-WHT using LPL1

-2 base selection requires 8.9
MFLOPs fewer computations than LoRA, yet achieves 10% greater accuracy on the CIFAR100
dataset. When the entire model is trained, the accuracy difference is smaller, but LBP-WHT still
outperforms the LoRA-based method. For instance, in comparison to LoRA-all, LBP-WHT using
LPL1

-7 base selection requires less computation (66.68 MFLOPs), but still improves accuracy by 2%
on CIFAR100 when training the EfficientFormerV2-S0 model.

Comparison with traditional full-rank BP: With LPL1
-8 base selection, our LBP-WHT method

either matches or surpasses the accuracy of full-rank BP while only requiring about 80% of the total
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Figure 3: Accuracy and computation for training the last stage of different models with different
ranks on CIFAR100 dataset. Our method consistently outperforms the baseline LoRA-all.

Partial Training: Training Last Stage + Decoder Full Training
Method R MFLOPs City VOC12A Method R MFLOPs City VOC12A
Full BP - 10052.00 62.85 69.30 Full BP - 16700.26 67.37 70.84
LoRA 8 5854.61 51.43 58.18 LoRA 8 11976.46 62.57 58.18
LoRA-all 8 6262.01 58.07 66.26 LoRA-all 8 11971.13 65.74 67.82
LPL1 -2★ 3 1481.94 58.95 67.93 LPL1 -2 3 5746.54 61.57 67.93
LPL1 -4★ 10 2725.39 60.97 68.85 LPL1 -4★ 10 7295.52 64.72 68.85
LPL1 -8 36 7308.45 62.68 68.95 LPL1 -8 36 13086.06 66.17 68.95

Table 3: Experimental results for semantic segmentation. Results are highlighted as in Table2.

computation. When using smaller ranks, LBP-WHT significantly reduces the cost with only minor
accuracy costs. For example, when training the final stage of EfficientFormer-L1 using LPL1

-4 base
selection, LBP-WHT achieves a 3.5× speedup with just a 1% loss in accuracy on CIFAR100. With
LPL1 -8 base selection, LBP-WHT achieves even higher accuracy (79.34%) with a 1.2× speedup.

These results underscore the merits of our method. As shown in Table 2, our method achieves
computational savings by systematically reducing the computational cost for all operations during
backpropagation, including the gradient computation for both input and weight. Specifically, when
we apply a similar rank for LoRA-all and LBP-WHT, we anticipate that both methods will have
similar computational costs for computing the weight gradient. However, as LoRA-all cannot speed
up the gradient computation for the input while LBP-WHT can, our LBP-WHT method requires
only half the total computation of LoRA-all. Consequently, for a similar computational budget,
LBP-WHT can employ a higher rank for low-rank projection, thus leading to a higher accuracy. For
example, when training the entire EfficientFormerV2-S0 model, LBP-WHT with LPL1-4 (rank 10)
only requires 1187 MFLOPs, which is 62% of the computational cost for LoRA-all. Thus, for a
similar budget, LBP-WHT can use a rank 28 projection (LPL1

-7) and achieve a higher accuracy.

4.3 Semantic Segmentation

Table 3 presents the experimental results for adapting the ADE20K-pretrained Segformer model on
Cityscapes and augmented Pascal VOC 2012 dataset. Our LBP-WHT has better results in most cases.
For instance, when partially training on the Cityscapes dataset, our approach using LPL1

-4 base
selection achieves a mIoU score approximately 0.9% higher than that of LoRA-all. Moreover, it only
requires 1481.9 MFLOPs, which is 4.2× faster. These findings not only further validate the efficacy
of our method, but also demonstrate its broad applicability across key computer vision tasks.

4.4 Exploration 1: Different Ranks for Low-rank Projection in LBP-WHT

Figure 3 shows the accuracy achieved when adapting ImageNet-pretrained ViTs for CIFAR100, with
varying ranks for low-rank model adaptation. Our observations from this figure are as follows:
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Figure 5: The WHT spectrum for gradient w.r.t. layer output (gy) collected from the last attention
block of EfficientFormer-L1. The brightness for each pixel (i, j) in the spectrum represents the
energy preserved by the WHT base Bi,j during projection. A brighter pixel means a larger energy. As
shown in Figure 2c, the WHT base with smaller indices corresponds to a lower frequency component.

1. Our LBP-WHT method consistently outperforms the LoRA-all method, i.e., for a similar level of
computation, LBP-WHT yields higher accuracy.

2. By altering the rank, LBP-WHT provides a broader range of cost options than the baseline method.

3. LBP-WHT’s accuracy monotonically improves as more ranks are employed for projection.

4. For all models with our LBP-WHT method, a generally concave accuracy-computation curve is
observed. This indicates strong diminishing returns in using larger ranks.

5. LBP-WHT with LPL1 -6 base selection achieves an accuracy very close to that of full BP.

Our first observation further confirms the superior performance of our method. The second obser-
vation indicates the broad applicability of our method. For instance, for edge devices with limited
computational budgets, like Raspberry Pi, we can employ LBP-WHT with a lower rank to reduce
computational cost. On the other hand, for more powerful devices, such as personal desktops equipped
with GPUs, a larger rank can be chosen to enhance accuracy. This ensures that users with various
computational resources and constraints can benefit from our method.
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Figure 4: Marginal accuracy: the slope of
the accuracy-computation curve in Figure 3.

The last three observations offer guidelines for rank selec-
tion with our LBP-WHT method.

With strict computational constraints: Given our third
observation above, if there is a hard limit on the maximum
number of FLOPs allocated for training, selecting the rank
for LBP-WHT is straightforward: we simply opt for the
largest possible number of ranks, which in most cases will
yield the highest possible accuracy.

Without strict computational constraints: Our final
two observations suggest that training efficiency can be
characterized by the marginal accuracy, or the slope of the
accuracy-computation curve. As shown in Figure 4, before
LPL1

-4, the marginal accuracy is significantly greater than
zero. However, after LPL1

-6, the marginal accuracy is
very close to zero. This implies that choosing fewer ranks than LPL1

-4 or more than LPL1
-6 may not

be advantageous, as it could either forgo the opportunity to achieve good performance with a small
amount of computation or waste substantial computation with little to no observable benefit. Thus, a
good rank selection empirically lies between LPL1 -4 and 6.

4.5 Exploration 2: Different Bases Selection Method Method Rank CF100 CF10

LPL1
10 78.27 94.60

LPL∞ 9 77.64 94.30
LHE 10 78.06 94.60

Table 4: Experimental results for adapting
EfficientFormer-L1 on CIFAR100 and CI-
FAR10 with different base selection meth-
ods. Accuracy is in percentages (%)

Figure 5 shows the WHT spectrum for the gradient w.r.t.
layer output (gy) collected from the last attention block in
EfficientFormer-L1. We observe that most energy concen-
trates in the low-frequency area, i.e., the top-left corner,
which supports claim in Section 3.2 that natural images have
strong spatial locality and strong low-frequency components.
Furthermore, Figure 5 demonstrates that by choosing WHT
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bases with low-frequency responses - that is, using the selection methods LPL1 and LPL∞ - we can
preserve most of the energy and minimize error during the low-rank projection. As indicated in
Table 4, both of these low-pass base selection methods yield accuracy levels very similar to those
achieved with the low-heuristic-error (LHE) method. The LHE method profiles the WHT spectrum
and selects the WHT bases with the strongest response. Given that the LPL1

base selection method
eliminates the need for profiling (unlike LHE) and offers a more favorable balance between accuracy
and cost compared to LPL∞ , we have selected LPL1

as the standard method for LBP-WHT.

4.6 Limitation and Broader Impacts

Full training with a small number of ranks: As shown in Table 2, we find that the accuracy
degradation is not negligible when using a small number of ranks for LBP-WHT full training. We
consider this is the issue of accumulating error introduced by low-rank projection during BP. We
expect that an improved approximation method can perform even better. Of note, even with accuracy
degradation, our method still consistently outperforms the baselines, i.e., LoRA-based methods.

Broader Impact: Our method greatly reduced the barrier for training ViTs. As a positive feature,
our method may push the development of privacy-centric on-device training methods like federated
learning; our method may also enable more researchers to test their ideas with powerful ViTs. On the
other hand, our method may lower the barrier for irresponsible customization and use of ViT.

5 Related Work

Low-rank Model Adaptation: [14] proposes to speed up transformer training by attaching and
training only low-rank branches to the linear layer. More precisely, consider a linear layer with
equation y = x · wT , where x is the input, y is the output, and w is the weight. LoRA adds a branch
that contains low-rank weights wA and wB , forming yLoRA = x ·wT + x · (wA ·wB)

T . The original
weight w is kept frozen, while the appended weights wA and wB are trained. Since the ranks of
wA and wB are much smaller than that of w, the computation needed to calculate the gradients
with respect to wA and wB is significantly reduced. However, this method does not decrease the
computation for calculating the gradient w.r.t. x. This is because it still needs to propagate the
gradient through the weights w to x, which considerably limits the performance of LoRA-based
methods. As demonstrated in Figure 3, our LBP-WHT, requires much less computation while having
better accuracy than LoRA-based methods; this is because our method reduces the computation for
procedures in BP, including the gradient calculation for both input and weights.

Other Orthogonal Methods for On-device Training: Previous research on efficient on-device
model adaptation falls into two main categories. The first category [33, 38–43] suggests reducing the
computational cost of arithmetic operations (addition and multiplication) in BP through quantization.
The second category [20, 44] proposes to append a smaller neural network to the original model and
accelerate adaptation by only training the attachment. To the best of our knowledge, our paper is the
first to apply low-rank BP for ViT model adaptation. Therefore, our method, LBP-WHT, is distinct
from previous research and can be combined with those methods for enhanced performance.

6 Conclusion

In this paper, we have addressed the problem of efficient model adaptation for ViT. We have proposed
a novel low-rank BP technique designed to reduce the computational load associated with the
propagation of gradients through the linear layers of ViT, which is a significant bottleneck when
fine-tuning ViT. In Section 3, we introduced the LBP-WHT method as a solution to accelerate
model adaptation. More specifically, LBP-WHT operates by projecting the gradient w.r.t. the output
(gy) into a low-rank space, performing matrix multiplications within this low-rank space, and then
projecting the results back into the original space. Since all matrix multiplications occur in a low-rank
space, the computational cost is significantly reduced. Additionally, thanks to the properties of the
Walsh-Hadamard Transform (WHT), the overhead for these projections is minimal (as discussed
in Section 3.3). Through extensive experiments in Section 4, we have demonstrated the efficiency
and broad applicability of our method. Our LBP-WHT approach consistently outperforms existing
methods with a significant speedup and higher accuracy.
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Appendix for Efficient Low-rank Backpropagation for Vision Transformer Adaptation

A Source Code
Code for reproducing our experimental results will be released upon acceptance.

B Preliminary Latency Evaluation on Edge Devices (Section 4)
EfficientFormer-L1 EfficientFormer-L7

(Cx, Cy, L) Method R Speedup Latency [µs]
(Cx, Cy, L) Method R Speedup Latency [µs]

CPU GPU CPU GPU CPU GPU CPU GPU

(448,1792,49)

Full BP - - - 8622.28 1.34

(768,3072,49)

Full BP - - - 23390.21 3.49
LPL1

-2 3 2.2× 1.8× 3862.15 0.73 LPL1
-2 3 1.5× 2.1× 15835.63 1.65

LPL1
-4 10 1.5× 1.5× 5681.61 0.88 LPL1

-4 10 1.5× 1.7× 15376.71 2.04
LPL1 -6 21 1.6× 1.4× 5539.20 0.96 LPL1 -6 21 1.4× 1.5× 16754.33 2.28

(1792,448,49)

Full BP - - - 8068.24 1.35

(3072,768,49)

Full BP - - - 22193.53 3.50
LPL1

-2 3 1.4× 1.6× 5666.05 0.87 LPL1
-2 3 1.5× 1.9× 14423.38 1.85

LPL1
-4 10 1.4× 1.3× 5750.53 1.03 LPL1

-4 10 1.6× 1.6× 14108.66 2.23
LPL1

-6 21 1.2× 1.2× 6858.44 1.12 LPL1
-6 21 1.3× 1.4× 16950.27 2.45

Table 5: Latency for BP through the last two linear layers in EfficientFormer-L1 and L7. We implement our
method with OpenBLAS and CuBLAS for deployment on CPU and GPU of NVIDIA Jetson Nano, respectively.

Table 5 shows the latency results for BP through the last two linear layers in EfficientFormer-L1 and
L7 measured on NVIDIA Jetson Nano. Of note, our main contribution is on the algorithmic side
and results in Table 5 are shown only for proving the potential of our approach for real deployment.
We note that despite our naive implementation, our method still significantly out-performs the
highly-optimized baseline methods.

C More Experimental Results for “Full Training” in Table 2 (Section 4.2)
Table 6 shows more results for training the entire model. For all models, our LBP-WHT consistently
achieves both higher accuracy and lower computational cost (marked with ★★ in Table 6) than the
baseline. Indeed, these results further demonstrate the effectiveness of our LBP-WHT approach.

Full Training
Model Method R Speedup mAcc MFLOPs CF100 CF10 Cars Flowers Food Pets

Efficient
Former

L1
(Hybrid)

Full BP - 1.0 90.61 5841.09 84.72 96.88 87.84 95.48 85.70 93.05
LoRA-all 8 1.5 89.13 4019.08 83.30 96.89 83.91 93.58 84.15 92.97
LPL1

-4 10 2.7 84.30 2150.55 77.51 94.17 69.58 93.72 78.53 92.31
LPL1

-6★★ 21 1.7 89.55 3371.43 83.07 96.39 85.74 95.10 84.06 92.94
LPL1 -7 28 1.4 89.96 4147.60 83.55 96.68 86.52 94.86 84.76 93.38
LPL1 -8 36 1.2 90.03 5036.63 83.78 96.81 86.42 94.83 84.97 93.38

Efficient
Former

L7
(Hybrid)

Full BP - 1.0 93.20 43128.48 88.54 98.20 91.10 97.64 89.36 94.36
LoRA-all 8 1.6 92.08 26222.33 88.13 98.12 88.09 96.65 87.82 93.68
LPL1

-4 10 3.4 91.69 12656.41 86.19 97.51 88.30 97.19 86.67 94.25
LPL1

-6★★ 21 1.9 92.54 22172.82 87.63 97.96 89.74 97.50 87.81 94.58
LPL1

-8 36 1.2 92.79 35147.13 87.76 98.04 90.49 97.53 88.50 94.41

Efficient
FormerV2

S0
(Hybrid)

Full BP - 1.0 89.19 2259.93 84.06 96.88 84.80 93.62 84.99 90.79
LoRA-all 8 1.2 86.07 1899.99 81.14 96.27 76.25 90.60 81.88 90.27
LPL1

-4 10 1.9 78.56 1186.67 72.93 92.67 51.14 90.68 74.62 89.34
LPL1

-6★★ 21 1.4 86.52 1577.43 81.66 96.16 76.74 91.48 82.74 90.32
LPL1

-7★★ 28 1.2 87.86 1833.31 83.14 96.53 80.69 92.21 83.76 90.84
LPL1

-8 36 1.1 88.56 2116.41 83.42 96.76 83.00 92.75 84.27 91.14

Efficient
FormerV2

L
(Hybrid)

Full BP - 1.0 93.40 12614.40 89.37 98.56 91.18 96.81 89.49 94.96
LoRA-all 8 1.4 92.37 8896.07 88.99 98.44 88.11 95.53 88.41 94.74
LPL1 -4 10 2.5 87.51 4981.08 82.73 96.02 73.59 95.63 82.35 94.74
LPL1 -6★★ 21 1.7 92.40 7575.79 88.09 98.20 88.96 96.11 87.93 95.12
LPL1 -8 36 1.1 93.18 11114.21 89.23 98.41 90.85 97.06 88.67 94.85

SwinV2
Small
(ViT)

Full BP - 1.0 93.77 48318.40 89.22 98.51 92.26 98.02 89.71 94.90
LoRA 8 1.8 92.44 27202.90 87.62 98.15 87.81 96.24 90.24 94.60
LoRA-all 8 1.7 92.78 27929.60 87.79 98.28 88.75 96.41 90.68 94.77
LPL1 -4 10 2.5 91.07 19341.06 84.50 96.31 89.11 97.93 83.85 94.69
LPL1 -6★★ 21 1.9 93.37 25894.42 89.17 98.36 90.55 98.02 89.32 94.82
LPL1 -8 36 1.4 93.88 34860.07 89.20 98.41 91.85 98.39 90.62 94.82

Table 6: Additional results for “Full Training” in Table 2. “LPL1 -r” refers to our LBP-WHT method with
LPL1 -r base selection as outlined in Equation 8. “mAcc” represents the mean accuracy across all datasets. “R”
is short for “rank”. “Hybrid” represents CNN-ViT-hybrid architecture. Results outperforming both LoRA and
LoRA-all in speed and mAcc are underlined and marked with ★. Those exceeding all LoRA methods get ★★.
Any results that have higher speed or mAcc are highlighted in bold.
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